
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 859

Implementing Efficient Multi-Keyword Ranked

Search Using Encrypted Storage Data

K. Anu
1
, S. Sakthi Vinayagam

2
, R. Raj kumar

3
, G. Karthika

4

PG Student, Computer Science, Chettinad college of engineering & Technology Karur, Karur, Tamilnadu1, 4

Assistant Professor, Computer Science, Chettinad college of engineering & Technology Karur, Karur Tamilnadu2, 3

Abstract: Cloud computing provide efficient storage to the user. The subcontracted records want to be encoded

because the user wants to kept their data without leakage and trust. The encrypted data must be kept confidential. To

overcome the difficulties we specify, by considering the big range of subcontracted files (statistics) within the cloud,

we make use of the relevance rating and k-nearest neighbor strategies to expand an efficient multi-keyword search
scheme which could go back the ranked seek consequences primarily based on the accuracy. inside this framework, we

leverage an efficient index to in addition improve the search efficiency, and undertake the blind storage machine to

conceal get right of entry to sample of the request user. safety evaluation demonstrates that our scheme can achieve

confidentiality of documents and index, wormhole privateness, wormhole unmanagebility, and concealing get right of

entry to sample of the request consumer. eventually, using widespread simulations, we show that our suggestion can

attain a good deal improved efficiency in phrases of seek functionality and search time as compared with the prevailing

proposals.

Key words: Cloud computing, searchable encryption, multi-keyword ranked search, access pattern.

I. INTRODUCTION

Mobile cloud computing [1] [4] gets rid of the hardware

limitation of mobile devices by exploring the scalable and

virtualized cloud storage and computing resources, and

accordingly is able to provide much more powerful and

scalable mobile services to users. In mobile cloud

computing, mobile users typically outsource their data to

external cloud servers, e.g., iCloud, to enjoy a stable, low-
cost and scalable way for data storage and access.

However, as outsourced data typically contain sensitive

privacy information, such as personal photos, emails, etc.,

which would lead to severe con dentiality and privacy

violations [5], if without efficient protections. It is

therefore necessary to encrypt the sensitive data before

outsourcing them to the cloud. The data encryption,

however, would result in salient dif culties when other

users need to access interested data with search, due to the

dif culties of search over encrypted data. This fundamental

issue in mobile cloud computing accordingly motivates an

extensive body of research in the recent years on the
investigation of search-able encryption technique to

achieve efficient searching over outsourced encrypted data

[6] [9].

A collection of research works have recently been

developed on the topic of multi-keyword search over

encrypted data. Cash et al. [10] propose a symmetric
searchable encryption scheme which achieves high ef

ciency for large databases with modest scari cation on

security guarantees. Cao et al. [11] propose a multi-

keyword search scheme sup-porting result ranking by

adopting k-nearest neighbors (kNN) technique [12].

Naveed et.al. [13] propose a dynamic search-able

encryption scheme through blind storage to conceal access

pattern of the search user.

In order to meet the practical search requirements, search

over encrypted data should support the following three

func-tions. First, the searchable encryption schemes

should support multi-keyword search, and provide the

same user experi-ence as searching in Google search with
different keywords; single-keyword search is far from

satisfactory by only return-ing very limited and inaccurate

search results. Second, to quickly identify most relevant

results, the search user would typically prefer cloud

servers to sort the returned search results in a relevance-

based order [14] ranked by the relevance of the search

request to the documents. In addition, showing the ranked

search to users can also eliminate the unnecessary network

traf c by only sending back the most relevant results from

cloud to search users. Third, as for the search ef ciency,

since the number of the documents contained in a database
could be extraordinarily large, searchable encryption

schemes should be efficient to quickly respond to the

search requests with minimum delays.

In contrast to the theoretical bene ts, most of the existing

proposals, however, fail to offer suf cient insights towards

the construction of full functioned searchable encryption

as described above. As an effort towards the issue, in this

paper, we propose an efficient multi-keyword ranked

search (EMRS) scheme over encrypted mobile cloud data

through blind storage. Our main contributions can be sum-

marized as follows:

We introduce a relevance score in searchable encryption.

to achieve multi-keyword ranked search over the

encrypted mobile cloud data. In addition to that, we con-

struct an efficient index to improve the search efficiency.
By modifying the blind storage system in the EMRS, we

solve the trapdoor unlinkability problem and conceal

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 860

access pattern of the search user from the cloud server.

We give thorough security analysis to demonstrate that the

EMRS can reach a high security level including con-

dentiality of documents and index, trapdoor privacy,

trapdoor unlinkability, and concealing access pattern of

the search user. Moreover, we implement extensive

experiments, which show that the EMRS can achieve

enhanced efficiency in the terms of functionality and
search efficiency compared with existing proposals.

The remainder of this paper is organized as follows. In

Section II, the system model, security requirements and

design goal are formalized. In Section III, we recap

relevance scoring, secure kNN technique, blind storage

system and ciphertext policy attribute-based encryption. In

Section IV, we propose the EMRS. Its security analysis

and performance evaluation are presented in Section V

and Section VI, respec-tively. In Section VII, we present

related work. Finally, we conclude this paper in Section

VIII.

II. SYSTEM MODEL, SECURITY REQUIREMENTS

AND DESIGN GOAL

A. SYSTEM MODEL
As shown in Fig. 1, the system model in the EMRS

consists of three entities: data owner, search users and

cloud server. The data owner keeps a large collection of

documents D to be outsourced to a cloud server in an

encrypted form C. In the system, the data owner sets a

keyword dictionary W which contains d keywords. To

enable search users to query over the encrypted
documents, the data owner builds the encrypted index z.

Both the encrypted documents C and encrypted index z are

stored on the cloud server through blind storage system.

FIGURE 1. System model

When a search user wants to search over the encrypted

documents, she rst receives the secret key from the data

owner. Then, she chooses a conjunctive keyword set $

which contains l interested keywords and computes a
trapdoor T including a keyword-related token stag and the

encrypted query vector Q. Finally, the search user sends

stag, Q, and an optional number k to the cloud server to

request the most k relevant results.

Upon receiving stag, Q, and k from the search user, the

cloud server uses the stag to access the index z in the blind

storage and computes the relevance scores with the

encrypted query vector Q. Then, the cloud server sends

back descrip-tors (Dsc) of the top-k documents that are

most relevant to the searched keywords. The search user
can use these descriptors to access the blind storage

system to retrieve the encrypted documents. An access

control technique, e.g., attribute-based encryption, can be

implemented to manage the search user's decryption

capability.

B. SECURITY REQUIREMENTS
In the EMRS, we consider the cloud server to be curious

but honest which means it executes the task assigned by

the data owner and the search user correctly. However, it

is curious about the data in its storage and the received

trapdoors to obtain additional information. Moreover, we

consider the Knowing Background model in the EMRS,

which allows the cloud server to know more background

information of the documents such as statistical

information of the keywords. Speci cally, the EMRS aims

to provide the following four security requirements:

Con dentiality of Documents and Index: Documents and

index should be encrypted before being outsourced to a

cloud server. The cloud server should be prevented from
prying into the outsourced documents and cannot deduce

any associations between the documents and keywords

using the index.

Trapdoor Privacy: Since the search user would like to keep

her searches from being exposed to the cloud server, the

cloud server should be prevented from know-ing the exact

keywords contained in the trapdoor of the search user.

Trapdoor Unlinkability: The trapdoors should not be

linkable, which means the trapdoors should be totally
different even if they contain the same keywords. In other

words, the trapdoors should be randomized rather than

determined. The cloud server cannot deduce any

associations between two trapdoors.

Concealing Access Pattern of the Search User: Access

pattern is the sequence of the searched results. In the

EMRS, the access pattern should be totally concealed from

the cloud server. Speci cally, the cloud server cannot learn

the total number of the documents stored on it nor the size

of the searched document even when the search user
retrieves this document from the cloud server.

C. DESIGN GOAL

To enable efficient and privacy-preserving multi-keyword

ranked search over encrypted mobile cloud data via blind

storage system, the EMRS has following design goals:

Multi-Keyword Ranked Search: To meet the requirements

for practical uses and provide better user experience, the

EMRS should not only support multi-keyword search over

encrypted mobile cloud data, but also achieve relevance-

based result ranking.

Search Ef ciency: Since the number of the total documents

may be very large in a practical situation, the EMRS

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 861

should achieve sublinear search with better search

efficiency.

Con dentiality and Privacy Preservation: To prevent the
cloud server from learning any additional information

about the documents and the index, and to keep search

users' trapdoors secret, the EMRS should cover all the

security requirements that we introduced above.

III. PRELIMINARIES

A. RELEVANCE SCORING
In searchable symmetric encryption (SSE) schemes, due to

a large number of documents, search results should be

retrieved in an order of the relevancy with the searched

keywords. Scoring is the natural way to weight the
relevancy of the documents. Among many relevance

scoring techniques, we adopt TF-IDF weighting [15] in the

EMRS. In TF-IDF weight-ing, term frequency tft; f refers

to the number of term t in a document f. Inverse document

frequency is calculated as
idft D log N , where dft denotes the number of documents dft

which contain term t and N refers to the total number of

documents in the database. Then, the weighting of term t

in a document f can be calculated as tft;f idft .

B. SECURE kNN COMPUTATION
We adopt the work of Wong et al. [12] in the EMRS.

Wong et al. propose a secure k-nearest neighbor (kNN)

scheme which can con dentially encrypt two vectors and

compute Euclidean distance of them. First, the secret key

(S; M1; M2) should be generated. The binary vector S is a

splitting indi-cator to split plaintext vector into two

random vectors, which can confuse the value of plaintext

vector. And M1 and M2 are used to encrypt the split
vectors. The correctness and security of secure kNN

computation scheme can be referred to [12].

C. BLIND STORAGE SYSTEM
A blind storage system [13] is built on the cloud server to

sup-port adding, updating and deleting documents and

concealing the access pattern of the search user from the
cloud server. In the blind storage system, all documents

are divided into xed-size blocks. These blocks are indexed

by a sequence of random integers generated by a

document-related seed. In the view of a cloud server, it

can only see the blocks of encrypted documents uploaded

and downloaded. Thus, the blind storage system leaks

little information to the cloud server. Speci cally, the cloud

server does not know which blocks are of the same

document, even the total number of the documents and the

size of each document. Moreover, all the documents and

index can be stored in the blind storage system to achieve
a searchable encryption scheme.

D. CIPHERTEXT POLICY ATTRIBUTE-BASED

ENCRYPTION
In ciphertext policy attribute-based encryption (CP-ABE)

[16], ciphertexts are created with an access struc-ture

(usually an access tree) which de nes the access policy. A
user can decrypt the data only if the attributes embedded

in his attribute keys satisfy the access policy in the

ciphertext. In CP-ABE, the encrypter holds the ultimate

authority of the access policy.

IV. PROPOSED SCHEME

In this section, we propose the detailed EMRS. Since the

encrypted documents and index z are both stored in the

blind storage system, we would provide the general

construc-tion of the blind storage system. Moreover, since
the EMRS aims to eliminate the risk of sharing the key

that is used to encrypt the documents with all search users

and solve the trapdoor unlinkability problem in Naveed's

scheme [13], we modify the construction of blind storage

and lever-age ciphertext policy attribute-based encryption

(CP-ABE) technique in the EMRS. However, speci c

construction of CP-ABE is out of scope of this paper and

we only give a simple indication here. The notations of

this paper are shown in Table 1. The EMRS consists of the

following phases: System Setup, Construction of Blind

Storage, Encrypted Database Setup, Trapdoor Generation,
Efficient and Secure Search, and Retrieve Documents

from Blind Stor-age.

TABLE 1 Notations

A. SYSTEM SETUP
The data owner takes a security parameter , and outputs

two invertible matrixes M1; M2 2 R(dC2) (dC2) as well as a

(dC2)-dimension binary vector S as the secret key, where

d represents the size of the keyword dictionary. Then, the

data owner generates a set of attribute keys sk for each

search user according to her role in the system. The data

owner chooses a key KT for a symmetric cryptography

Enc(), e.g., AES. Finally, the data owner sends (M1; M2;

S; sk; Enc(); KT) to the search user through a secure

channel.

B. CONSTRUCTION OF BLIND STORAGE
The data owner chooses a full-domain collusion resistant

hash function H , a full-domain pseudorandom function 9,

a pseudorandom generator 0 and a hash function 8Vf0; 1g

! f0; 1g192. 9 and 0 are based on the AES block-cipher

[13]. Then, the data owner chooses a number > 1 that de

nes the expansion parameter and a number that denotes the
minimum number of blocks in a communication.

1) B.KEYGEN

The data owner generates a key K9 for the function 9 and

sends it to the search user using a secure channel.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 862

2) B.BUILD

This phase takes into a large collection of documents D. D

is a list of documents (d1; d2; d3 dm) containing m docu-

ments. where each document has a unique id denoted as

idi. The B.Build outputs an array of blocks B, which

consists of nb blocks of mb bits each. For document di, it
contains sizei blocks of mb bits each and each header of

these blocks contains the H (idi). In addition, the header of

the rst block of the document di indicates the size of di. At

the beginning, we initialize all blocks in B with all 0. For

each document di in D, we construct the blind storage as

follows:

Step 1: Compute the seed i D 9K9 (idi) as the input of the

function 0. Generate a suf ciently long bit-number through

the function 0 using the seed I and parse it as a sequence
of integers in the range [nb]. Let [i;l] denote the rst l

integers of this sequence. Generate a set Sf D [i; max(d

sizeie;)].

Step 2: Let Sf
0
 D [i;], then check if the following

conditions hold:

There exists sizei free blocks indexed by the integers in the

set Sf .

There exists one free block indexed by the integers in the

set Sf
0.If either of the above two does not hold, abort.

Step 3: Pick a subset Sf
0 Sf that contains sizei integers, and

make sure that the blocks indexed by these integers in the

subset Sf
0 are all free. We would rely on the fact that

integers in the set Sf are in a random order and we pick the

rst sizei integers indexing free blocks and make these

integers form the subset Sf
0 . Mark these blocks as unfree.

Then, write the document di to the blocks indexed by the

integers in Sf
0 in an increasing order.

Note that, one can once write the blocks of different docu-

ments to the blind storage system to conceal the

associations of the blocks. Moreover, the speci c

construction of each block and the encryption of the

blocks would be discussed next.

DISCUSSIONS

The main idea of the blind storage system is that storing a

document in a set of xed-size blocks indexed by the

integers, that are generated by applying the seed i to the

pseudorandom generator 0. To reduce the probability that

the number of free blocks indexed by integers in Sf is less

than sizei, we can choose a sequence of sizei integers as

the set Sf . Here the choice of the parameter is an inherent

tension between collision probability and the wasted

space. And the probability the above two conditions in
Step 2 do not hold may be negligible by the choice of the

parameters [13]. And we would prove it in Section V.

C. ENCRYPTED DATABASE SETUP
The data owner builds the encrypted database as follows:
Step 1: The data owner computes the d-dimension

relevance vector p D (p1; p2; pd) for each document using

the TF-IDF weighting technique, where pj for j 2 (1; 2 d)

represents the weighting of keyword !j in document di.

Then, the data owner extends the p to a (dC2)-dimension

vector p . The (dC1)-th entry of p is set to a random

number " and the (dC2)-th entry is set to 1. We would let "

follow a normal distribution N (; 2) [11]. For each

document di, to com-pute the encrypted relevance vector,

the data owner encrypts the associated extended relevance

vector p using the secret key M1, M2 and S. First, the data

owner chooses a random number r and splits the extended
relevance vector p into two (dC2)-dimension vectors p0

and p00 using the vector S. For the j-th item in p, set

pj
0
 D pj

00
 D pj ; if SjD1 (1)

pj
0
 D 2

1
pj C r; pj

00
D2

1
pj r; otherwise

where Sj represents the j-th item of S. Then compute the P

D fM1
T p0; M2

T p00g as the encrypted relevance vector.

Step 2: For each document di in D, set the document into

blocks of mb bits each. For each block, there is a header H

(idi) indicating that this block belongs to document di. And

the sizei of the document is contained in the header of the

rst block of di. Then, for each document di, the data owner

chooses a 192-bit key Ki for the algorithm Enc(). More

precisely, for each block B[j] of the document di, where j

represents the index number of this block, compute the Ki

8(j) as the key for the encryption of this block. Since each

block has a unique index number, the blocks of the same

document are encrypted with different keys. The
document di contains sizei encrypted blocks and the rst

block of the document di with index number j is as

Enc(Ki8(j))(H (idi)jjsizeijjdata) (2)

And the rest of the blocks of di is as

Enc(Ki 8(j))(H (idi)jjdata) (3)

Finally, the data owner encrypts all the documents and

writes them to the blind storage system using the B.Build
function.

Step 3: To enable efficient search over the encrypted

documents, the data owner builds the index z. First, the

data owner de nes the access policy i for each document di.

We denote the result of attribute-based encryption using

access policy i as ABE i (). The data owner initializes z to

an empty array indexed by all keywords. Then, the index z

can be constructed as shown in Algorithm 1.

Algorithm 1 Initialize z

1: for each keyword ! 2 W do

2: Set t an empty list

3: for each document di containing the keyword ! do

4: Get the associated vector P of di

5: Choose a random number x

6: Dsc ABE i (idijjKijjx)

7: Append the tuple (Dsc; P) to t

8: end for
9: z[!] D t

10: end for
11: return z

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 863

As we can see, the index z maps the keyword to the

encrypted relevance vectors (P) and the descriptors (Dsc)

of the documents that contain the keyword. And each list

z[!] can be transformed to be stored in the blind storage

system with ! as the document id. Speci cally, for each

z[!], the data owner computes ! D 9K9 (!) as the seed for the
function 0 to generate the set Sf . Here, for each block of

z[!] indexed by the integer j, the data owner adds an

encrypted header as Enc(KT 8(j))(H (!)jjsize!), where size!

represents the number of blocks that belong to z[!].

Finally, the data owner writes the index z to the blind

storage system using the B.Build function.

DISCUSSIONS

When using the B.Build function, it is crucial to determine

the way we compute the seed for generating the set Sf . We

use the document id idi to compute the seed for the

documents stored in the blind storage system, and the

keyword ! to compute the seed for each z[!]. Moreover,

each header of the blocks of the documents contains the

encrypted H (idi) and the rst block indicates the sizei. And

the blocks of index z are different from those of the

documents. Each header of the blocks of index z is

denoted as Enc(KT 8(j))(H (!)jjsize!). This little change is for

the security concerns and does not affect the
implementation of the blind storage. In addition, since

each block is encrypted using the key generated by the

index number, the headers would be different even if the

two blocks belong to the same document or the same list

z[!].

D. TRAPDOOR GENERATION
To search over the outsourced encrypted data, the search

user needs to compute the trapdoor including a keyword-

related token stag and encrypted query vector Q as

follows:

Step 1: The search user takes a keyword conjunction $ D

(!1; !2; !l) with l keywords of interest in W . A d-

dimension binary query vector q is generated where the j-

th bit of q represents whether !j 2 $ or not. Then, the

search user chooses two random numbers r, t and scales

the query vector q to a (dC2)-dimension vector q as

q D frq; r; tg (4)

Then, the search user chooses a random number r0 and

splits the vector q into two (dC2)-dimension vectors q0 and

q00. For the j-th item in q , set

qj
0 D qj

00 D qj ; if Sj D 0 (5)

(
qj0 D 2

1 qj C r0; qj
00 D 2

1 qj r
0; otherwise

The search user computes the Q D fM1
1 q0; M2

1 q00g as

the encrypted query vector.

Step 2: The search user chooses the estimated least
frequent keyword !0 in the conjunction $ and computes the

seed !0 D 9K9 (!0). Then the search user generates a long

bit-number through the function 0 using the seed !0 . The

search user chooses the sequence [!0 ;] and randomly

adds dummy integers to the sequence. The search user

down-loads the blocks indexed by these 2 integers and

decrypts the header using the key KT 8(j), where j is the

index number of the block, to nd the rst block of the list

z[!0], which consists of the descriptors and the encrypted

relevance vectors of the documents containing !
0
. Then the

search user obtains the size!0 from the rst block and

computes the set S! D [!0 ; size!0]. The search user
randomly adds size!0 dummy integers to the set S!

resulting in a set S!
0 of 2 size!0 integers. And the extended

set S!
0 is denoted as stag. Note that, the stag consists of

some dummy integers, which is for the privacy

consideration. Finally, the search user sends Q, stag and a

number k to the cloud server to request the most k relevant

documents.

E. EFFICIENT AND SECURE SEARCH
Upon receiving Q, stag, and k, the cloud server parses the

stag to get a set of integers in the range [nb]. Then, the

cloud server accesses index z in the blind storage and

retrieves the blocks indexed by the integers to obtain the

tuples (ABE i (idijjKijjx); P) on these blocks. Note that,

these blocks consist of the blocks of z[!0] and some

dummy blocks. For each retrieved encrypted relevance

vector P, compute the relevance score Scorei for the

associated document di with the encrypted query vector Q

as follows:

Scorei D P Q

D fM1
T p0; M2

T p00g fM1
1 q0; M2

1 q00g

D p0 q0 C p00 q00

D p q

D (p; ; 1) (rq; r; t)

D r(pq C ") C t (6)

Finally, after sorting the relevance scores, the cloud server

sends back the descriptors ABE i (idijjKijjx) of the top-k

documents that are most relevant to the searched

keywords. Note that, as discussed before, attribute-based

encryption as an access control technique can be

implemented to manage search user's decryption

capability.

F. Retrieve documents from blind storage
Upon receiving a set of descriptors ABE i (idijjKijjx), the

search user can retrieve the documents as follows:

Step 1: If the search user's attributes satisfy the access
policy of the document, the search user can decrypt the

descriptor using her secret attribute keys to get the

document id idi and the associated symmetric key Ki. To

retrieve the document di, compute i D 9K9 (idi) for the

function 0. Generate a suf ciently long bit-number through

the func-tion 0 using the seed i, parse it as a sequence of

integers in the range [nb] and choose the rst integers as the

set Sf
0. Retrieve the blocks indexed by these integers from

the encrypted database D through blind storage system.

Step 2: The search user tries to decrypt these blocks using

the symmetric key Ki 8(j), until she nds the rst block of the

document di. If she does not nd the rst block, the document

is not accessed in the system. Otherwise, the search user

recovers the size of the document sizei from the header of

the rst block.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 864

Step 3: Then, the search user computes l D d sizeie. If l ,

compute Sf D [i;]. Otherwise, compute Sf D [i; l] and

retrieve the rest of the blocks indexed by the integers in Sf

via the blind storage system. Decrypt these blocks and

combine the blocks with the header H (idi) in an increasing

order to recover document di.

DISCUSSIONS
Here we explain how the search user retrieves one

document from the blind storage system. This can form

the foundation of the B.Aceess function of the blind

storage. Moreover, the search user can require more than

one document once by combining the sequence Sf
0 and Sf

of different documents in a random order. And this

combination can further conceal access pattern of the

search user since the cloud server even does not know the

number of documents that the search user requires.

V. SECURITY ANALYSIS

Under the assumption presented in Section II, we analyze

the security properties of the EMRS. We give analysis of

the EMRS in terms of con dentiality of documents and
index, trapdoor privacy, trapdoor unlinkability and

concealing access pattern of the search user.

A. CONFIDENTIALITY OF DOCUMENTS AND

INDEX
The documents are encrypted by the traditional symmetric

cryptography technique before being outsourced to the
cloud server. Without a correct key, the search user and

cloud server cannot decrypt the documents. As for index

con dentiality, the relevance vector for each document is

encrypted using the secret key M1, M2, and S. And the

descriptors of the documents are encrypted using CP-ABE

technique. Thus, the cloud server can only use the index z

to retrieve the encrypted relevance vectors without

knowing any additional information, such as the

associations between the documents and the keywords.

And only the search user with correct attribute keys can

decrypt the descriptor ABE i (idijjKijjx) to get the
document id and the associated symmetric key. Thus, the

con dentiality of documents and index can be well

protected.

B. TRAPDOOR PRIVACY
When a search user generates her trapdoor including the

keyword-related token stag and encrypted query vector Q,

she randomly chooses two numbers r and t. Then, for the

query vector q, the search user extends it as (rq; r; t) and

encrypts the query vector using the secret key M1; M2 and

S. Thus, the query vectors can be totally different even if

they contain same keywords. And we use the secure

function 9 and 0 to help the search user compute keyword-

related token stag using the secret key K9 . Without the

secret key M1; M2; S and K9 , the cloud server cannot pry

into the trapdoor. And the search user can add dummy

integers to the set Sf to conceal what she is truly searching
for. Thus, the keyword information in the trapdoor is

totally concealed from the cloud server in the EMRS and

trapdoor privacy is well protected.

C. TRAPDOOR UNLINKABILITY
Trapdoor unlinkability is de ned as that the cloud server

cannot deduce associations between any two trapdoors.

Even though the cloud server cannot decrypt the trapdoors,

any association between two trapdoors may lead to the

leakage of the search user's privacy. We consider whether
the two trapdoors including stag and the encrypted query

vector Q can be linked to each other or to the keywords

Moreover, we would prove the EMRS can achieve

trapdoor unlinkability under the Knowing Backgroud

model.

To compute the encrypted query vector Q that is de ned as

fM1
1 q0; M2

1 q00g in the EMRS. First, the search user

needs to extend the query vector q to q . As we can see,

the (dC1)-th and (dC2)-th entry of the vector q are set to
random values r and t. So there are 2 r 2 t possible values,

where the number r and t are r -bit or t -bit long,

respectively. Further, the search user needs to split the

vector q according to the splitting vector S as we discussed

above. If Sj D 0, the qj is split into two random values

which add up to qj . Suppose that the number of 0 in S is

and each dimension of the vector q0 is q-bit long. We can

see that r , t , and q are independent of each other. Then we

can compute the probability that two encrypted query

vectors are the same as

Therefore, the larger these parameters are, the lower the

prob-ability is. Hence, if we choose 1024-bit r and t, the

probability that two encrypted query vectors are the same

is P < 22048
1 , which is negligible as a result.

As for the keyword-related token stag, the search user rst

obtains the size! from the cloud server using the sequence

of 2 integers, half of which are dummy integers. Then, the

search user computes the set S! D [!; size!] and adds size!

dummy integers to the set S! to form the stag. Thus, each
stag contains 2 size! random integers, half of which are

random integers. Suppose the integers are nb bits long.

Then the probability that the two stags are the same is

Hence, if we choose 12-bit long nb, 3-bit long extension

parameter and size! is supposed to be 8-bit long, the

probability P0 < 2576
1 , which is negligible as a result.

In Cash's scheme [10] and Naveed's scheme [13], for the

same keyword, the search user can only compute the same

stag or the same set Sf . Moreover, when a search user

accesses the cloud server using a keyword that has been

searched before, the cloud server can learn that two search

requests contain the same keyword. Under Knowing
Backgroud model, the cloud server may learn the search

fre-quency of the keywords and deduce some information

using the statistic knowledge in [10] and [13].

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 865

D. CONCEALING ACCESS PATTERN OF THE

SEARCH USER
The access pattern means the sequence of the searched

results [11]. In Cash's scheme [10] and Cao's scheme [11],

the search user directly obtains the associated documents

from the cloud server, which may reveal the association
between the search request and the documents to the cloud

server. In the EMRS by modifying the blind storage

system, access pattern is well concealed from the cloud

server. Since the headers of the blocks are encrypted with

the block number j and each descriptor has a random

padding, they would be different even if they belong to the

same document. Thus, in view of the cloud server, it can

only see blocks downloaded and uploaded. And, the cloud

server even does not know the number of the documents

stored in its storage and the length of each document, since

all the documents are divided into blocks in a random
order. In addition, when a search user requests a

document, she can choose more blocks than the document

contains. Moreover, she can require blocks of different

documents at one time in a random order to totally conceal

what she is requesting.

In the implementation of the blind storage system, there

would be a trade-off between security guarantee and

perfor-mance by the choice of parameters. We de ne the

Perr as the probability that the data owner aborts the

document when there are not enough free blocks indexed

by the integers in the set Sf as discussed in Section IV.
When this abort happens, some illegitimate information

may be revealed to the cloud server [13]. We consider the

following parameters , and to measure the Perr . We denote

D nb=m, where nb is the number of blocks in the array B

and m is the total number of the documents stored on the

cloud server. is the ratio that scales the number of blocks a

document contains to the number of blocks in the set Sf. is

the minimum number of blocks in a transaction. Then,

according to [13], we can compute the Perr as

As we can see, the higher these parameters we choose, the

lower the probability Perr is and the higher the security

guarantee would be. However, the parameters also in

uence the performance of the blind storage system, such as

the communication and computation cost. By the choice of
these parameters, the probability Perr would be negligible

[13]. The comparison of security level is shown in TABLE

2. We can see that the EMRS can achieve best security

guaran-tees compared with the exiting schemes [10], [11],

[13].

TABLE 2.Comparison of security level

VI. PERFORMANCE EVALUATION

A. FUNCTIONALITY
Considering a large number of documents and search users

in a cloud environment, searchable encryption schemes

should allow privacy-preserving multi-keyword search and

return documents in a order of higher relevance to the

search request. As shown in TABLE 3, we compare

functionalities among the EMRS, Cash's scheme [10],

Cao's scheme [11] and Naveed's scheme [13].

TABLE 3 Comparison of functionalities

Cash's scheme supports multi-keyword search, but cannot

return results in a speci c order of the relevance score.
Cao's scheme achieves multi-keyword search and returns

documents in a relevance-based order. Naveed's scheme

implements the blind storage system to protect the access

pattern but it only supports single-keyword search and

returns undifferentiated results. The EMRS can achieve

multi-keyword search, and relevance sorting while

preserving a high security guarantees as discussed in

Section V.

B. COMPUTATION OVERHEAD

We evaluate the performance of the EMRS through

simula-tions and compare the time cost with Cao's [11].

We apply a real dataset National Science Foundation

Research Awards Abstracts 1990-2003 [17], by randomly

selecting some documents. Then, we conduct real-world

experiments on a 2.8Hz-processor, computing machine to
evaluate the perfor-mance of index construction and

search phases. Moreover, we implement the trapdoor

generation on a 1.2GHz smart phone. We would show the

simulation experiments of the EMRS, and demonstrate

that the computation overhead of index construction and

trapdoor generation are almost the same compared with

that of Cao's [11]. Then we would compare the execution

time of search phase with Cao's [11] and show that the

EMRS achieves better search ef ciency.

1) INDEX CONSTRUCTION

Index construction in the EMRS consists of two phases:

encrypted relevance vector computation and the efficient

index z construction via blind storage.

As for the computation of encrypted relevance vector, the

data owner rst needs to compute the relevance score for

each keyword in each document using the TF IDF

technique. As shown in Fig. 2, both the size of the

dictionary and the number of documents would in uence
the time for calculating all the relevance scores. Then, to

compute the encrypted relevance vector P, the data owner

needs two multiplications of a (d C 2) (d C 2) matrix and a

(dC2)-dimension vector with complexity O(d
2
). The time

cost for computing all the encrypted relevance vectors is

linear to the size of the database since time for building

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 866

subindex of one document is xed. Thus, the computation

complexity is O(md2), where m represents the number of

documents in the database and d represents the size of the

keyword dictionary W . The computation complexity is as

the same as that in Cao's [11]. The computational cost for

computing the encrypted relevance vectors is shown in
Fig. 3. As we can see, both the size of the dictionary and

the number of documents would affect the execution time.

FIGURE 2. Time for calculating relevance score. (a)

For the different size of dictionary with the same
number of documents, m D 10000. (b) For the different

number of documents with the same size of dictionary,

jWj D 10000.

Finally, we adopt the index z via the blind storage in the

EMRS to improve search ef ciency and conceal the access

pattern of the search user. For each keyword ! 2 W , we

need to build the list z[!] of tuples (ABE i (idijjKijjx); P) of
documents that contain the keyword and upload it using

the B.Build function. So the computation complexity to

build the index z is O(%d), where % represents the

average number of tuples contained in the list z[!] and is

no more than the number of document m. Since the access

pattern is not con-sidered in most schemes, we are not

going to give the speci c comparison of the

implementation of the blind storage [13] in the EMRS.

2) TRAPDOOR GENERATION

In the EMRS, trapdoor generation consists of stag and

encrypted query vector Q. To compute stag, the search

user only needs two efficient operations (9 and 0) to

generate a sequence of random integers. Compared with

time cost to compute the encrypted query vector which is

linearly increasing with the size of the keyword dictionary,

time cost for computing stag is negligible.

FIGURE 3. Time for computing the encrypted

relevance vectors. (a) For the different size of

dictionary with the same number of documents, m D

6000. (b) For the different number of documents with

the same size of dictionary, jWj D 4000.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 867

FIGURE 4. Time for generating trapdoor on a real

smart phone. (a) For the different size of dictionary

with the same number of query keywords, j$j D 20. (b)

For the different number of query keywords with the

same size of dictionary, jWj D 6000.

As for computing the encrypted query vector Q, the search

user needs to compute two multiplications of a (d C 2) (d

C 2) matrix and a (dC2)-dimension vector with complexity

O(d 2). Thus, the computation complexity of trapdoor

generation for the search user is O(d2), which is as the
same as that in Cao's scheme [11]. As shown in Fig. 4, we

conduct a simulation experiment on a 1.2Ghz smart phone

and give the experiment results for computing trapdoor in

the EMRS.

3) SEARCH EFFICIENCY

Search operation in Cao's scheme [11] requires comput-

ing the relevance scores for all documents in the database.
For each document, the cloud server needs to compute the

inner product of two (dC2)-dimension vectors twice. Thus,

the computation complexity for the whole data collection

is O(md). As we can see, the search time in Cao's scheme

linearly increases with the scale of the dataset, which is

impractical for large-scale dataset.

In the EMRS, by adopting the inverted index z which is

built in the blind storage system, we achieve a sublinear

computation overhead compared with Cao's scheme.

Upon receiving stag, the cloud server can use stag to

access blind storage and retrieve the encrypted relevance
vector on the blocks indexed by the stag. These blocks

consist of blocks of documents containing the stag-related

keyword and some dummy blocks. Thus, the EMRS can

signi cantly decrease the number of documents which are

relevant to the searched keywords. Then, the cloud server

only needs to compute the inner product of two (dC2)-

dimension vectors for the associated documents rather

than computing relevance scores for all documents as that

in Cao's scheme [11]. The computation complexity for

search operation in the EMRS is O(%sd), where %s

represents the the number of documents which contain the
keyword applied by the keyword-related token stag and

the is the extension parameter that scales the number of

blocks in a document to the number of blocks in the set Sf

The value of %s can be small if the search user typically

chooses the estimated least frequent keyword, such that

the computation cost for search on the cloud server is signi

cantly reduced.

As shown in Fig. 5, the computation cost of search phase
is mainly affected by the number of documents in the

dataset and the size of the keyword dictionary. In our

experiments, we implement the index on the memory to

avoid the time-cost I/O operations. Note that, although the

time costs of search operation are linearly increasing in

both schemes, the increase rate of the EMRS is less than

half of that in Cao's scheme.

FIGURE 5. Time for search on the cloud server. (a)

For different number of documents with the same size

of keyword dictionary and number of searched
keywords, jWj D 8000, j$j D 20.

(b) For different size of keyword dictionary with the

same number of documents and searched keywords, m

D 8000, j$j D 20.

C. COMMUNICATION OVERHEAD
When the system is once setup, including generating
encrypted documents and index, the communication

overhead is mainly in uenced by the search phase. In this

section, we would compare the communication overhead

among the EMRS, Cash's scheme [10], Cao's scheme [11]

and Naveed's scheme [13] when searching over the cloud

server. Since most existing schemes of SSE only consider

obtaining a sequence of results rather than the related

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 868

documents, the comparison here would not involve the

communication of retrieving the documents.

In Cao's scheme [11], the search user needs to compute the

trapdoor and send it to the cloud server. Then it can obtain

the searched results. The communication overhead in
Cao's is 2(d C 2) q, where d represents the size of the

keyword dic-tionary and each dimension of the encrypted

query vector is q-bit long. According to Cash's scheme

[10], when a search user wants to query over the cloud

server using a conjunctive keyword set $, she needs to

compute stag for the estimated least-frequent keyword and

xtokens for the other keywords in the set $. And, each

xtoken contains j$ j elements in G, where G is a group of

prime order p. Moreover, the search user needs to

continuously compute the xtoken until the cloud server

sends stop, which indicates that the total number of the

xtokens is linear to %, the number of documents
containing the keyword related to the stag. This results in

much unnecessary communication overhead of %j$ jjGj,

where jGj represents the size of an element in G. In

Naveed's scheme [13], since the index is constructed in the

blind storage system, the search user may need to access

the blind storage system to obtain the size! and then obtain

the results. This requires one or two round communication

of size! nb bits, where is the extension parameter, size! is

the number of blocks of documents containing !, and each

index number is nb-bit long. In the EMRS, we modify the

way the search user computes the sequence Sf that indexes
the blocks by adding some dummy integers to Sf to

conceal what the search user is searching for. The

communication comparison is shown in TABLE 4. As we

can see, even though the EMRS requires a little more

communication overhead, the EMRS can achieve more

functionalities compared with [10], [13] as shown in

TABLE 3 and better search ef ciency compared with [11]

as shown in Fig. 5.

TABLE 4 Comparison of communication overhead

DISCUSSIONS

Note that the communication overhead in our paper is

higher than that in the Cao's scheme. But the higher
communica-tion overhead will not severely affect the

user's experience. This is because that the communication

overhead is mainly incurred by the exchange of short

signaling messages and can be transmitted in a very short

time. Moreover, with the adoption of advanced wireless

technology, such as 4G/5G and IEEE 802.11ac, the

communication delays tend to further reduce and

negligible. As a theoretical framework, in this paper, we

target to a prototype system and expose our proposal to the

public. As such, based on the speci c deploy-ment

scenarios, e.g., whether communication bandwidth is

expensive and precious or not, to modify our proposal for

real-world implementation.

D. SIZE OF RETURNED RESULTS
The size of the returned results in the EMRS is mainly

affected by the choice of the security parameters, and the

larger these two numbers are, the higher security guar-

antee the scheme provides, as we discussed in Section V.

The size of returned results for each document can be a

size! blocks, which contain the blocks of searched

document and dummy blocks. Moreover, the search user
can require many documents at one time and thus can

avoid requesting dummy blocks. The EMRS provides

balance parameters for search users to satisfy their

different requirements on communication and computation

cost, as well as privacy.

VII. RELATED WORK

Searchable encryption is a promising technique that

provides the search service over the encrypted cloud data.

It can mainly be classi ed into two types: Searchable

Public-key Encryption. (SPE) and Searchable Symmetric
Encryption (SSE).

Boneh et al. [18] rst propose the concept of SPE, which

supports single-keyword search over the encrypted cloud

data. The work is later extended in [19] to support the con-

junctive, subset, and range search queries on encrypted

data. Zhang et al. [20] propose an efficient public key

searchable encryption scheme with conjunctive-subset

search. However, the above proposals require that the
search results match all the keywords at the same time,

and cannot return results in a specific order. Further, Liu et

al. [21] propose a ranked search scheme which adopts a

mask matrix to achieve cost-effectiveness. Yu et al. [15]

propose a multi-keyword retrieval scheme that can return

the top-k relevant documents by lever-aging the fully

homomorphic encryption. [22], [23] adopt the attribute-

based encryption technique to achieve search authority in

SPE.

Although SPE can achieve above rich search function-

alities, SPE are not efficient since SPE involves a good

many asymmetric cryptography operations. This motivates

the research on SSE mechanisms.

The rst SSE scheme is introduced by Song et al. [24],

which builds the searchable encrypted index in a

symmetric way but only supports single keyword.

Curtmola et al. further improve the security de nitions of
SSE in [25]. Their work forms the basis of many

subsequent works, such as [10], [13], and [26], by

introducing the fundamental approach of using a keyword-

related index, which enable the quickly search of

documents that contain a given keyword. To meet the

requirements of practical uses, conjunctive multi-keyword

search is necessary which has been studied in [11] and

[15]. Moreover, to give the search user a better search

experience, some proposals [27], [28] propose to enabled

ranked results instead of returning undifferentiated results,

by introducing the relevance score to the searchable

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53204 869

encryption. To further improve the user experience, fuzzy

keyword search over the encrypted data has also been

developed in [7] and [29].

Cao et al. [11] propose a privacy-preserving multi-

keyword search scheme that supports ranked results by

adopting secure k-nearest neighbors (kNN) technique in

searchable encryption. The proposal can achieve rich

functionalities such as multi-keyword and ranked results,

but requires the computation of relevance scores for all

documents contained in the database. This operation

incurs huge computation overload to the cloud server and

is therefore not suitable for large-scale datasets. Cash et al.

[10] adopt the inverted index TSet, which maps the

keyword to the documents containing it, to achieve

efficient multi-keyword search for large-scale datasets.
The works is later extended in [26] with the

implementation on real-world datasets. However, the

ranked results is not sup-ported in [26]. Naveed et.al. [13]

construct a blind storage sys-tem to achieve searchable

encryption and conceal the access pattern of the search

user. However, only single-keyword search is supported in

[13].

VIII. CONCLUSION

In this paper, we have proposed a multi-keyword ranked
search scheme to enable accurate, efficient and secure

search over encrypted mobile cloud data. Security analysis

have demonstrated that proposed scheme can effectively

achieve con dentiality of documents and index, trapdoor

privacy, trapdoor unlinkability, and concealing access

pattern of the search user. Extensive performance

evaluations have shown that the proposed scheme can

achieve better ef - ciency in terms of the functionality and

computation overhead compared with existing ones. For

the future work, we will investigate on the authentication

and access control issues in searchable encryption

technique.

REFERENCES

[1] H. Liang, L. X. Cai, D. Huang, X. Shen, and D. Peng, ``An SMDP-

based service model for interdomain resource allocation in mobile

cloud net-works,'' IEEE Trans. Veh. Technol., vol. 61, no. 5, pp.

2222 2232, Jun. 2012.

[2] M. M. E. A. Mahmoud and X. Shen, ``A cloud-based scheme for

pro-tecting source-location privacy against hotspot-locating attack

in wireless sensor networks,'' IEEE Trans. Parallel Distrib. Syst.,

vol. 23, no. 10, pp. 1805 1818, Oct. 2012.

[3] Q. Shen, X. Liang, X. Shen, X. Lin, and H. Y. Luo, ``Exploiting

geo-distributed clouds for a e-health monitoring system with

minimum service delay and privacy preservation,'' IEEE J. Biomed.

Health Inform., vol. 18, no. 2, pp. 430 439, Mar. 2014.

[4] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, ``A survey of mobile

cloud computing: Architecture, applications, and approaches,''

Wireless Commun. Mobile Comput., vol. 13, no. 18, pp. 1587 1611,

Dec. 2013.

[5] H. Li, Y. Dai, L. Tian, and H. Yang, ``Identity-based authentication

for cloud computing,'' in Cloud Computing. Berlin, Germany:

Springer-Verlag, 2009, pp. 157 166.

[6] W. Sun, et al., ``Privacy-preserving multi-keyword text search in

the cloud supporting similarity-based ranking,'' in Proc. 8th ACM

SIGSAC Symp. Inf., Comput. Commun. Secur., 2013, pp. 71 82.

[7] B. Wang, S. Yu, W. Lou, and Y. T. Hou, ``Privacy-preserving

multi-keyword fuzzy search over encrypted data in the cloud,'' in

Proc. IEEE INFOCOM, Apr./May 2014, pp. 2112 2120.

[8] E. Stefanov, C. Papamanthou, and E. Shi, ``Practical dynamic

searchable encryption with small leakage,'' in Proc. NDSS, Feb.

2014.

[9] Y. Yang, H. Li, W. Liu, H. Yang, and M. Wen, ``Secure dynamic

search-able symmetric encryption with constant document update

cost,'' in Proc. GLOBECOM, Anaheim, CA, USA, 2014.

[10] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Ro³u, and M.

Steiner, ``Highly-scalable searchable symmetric encryption with

support for Boolean queries,'' in Proc. CRYPTO, 2013, pp. 353 373.

[11] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ``Privacy-preserving

multi-keyword ranked search over encrypted cloud data,'' IEEE

Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 222 233, Jan. 2014.

[12] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis, ``Secure

kNN computation on encrypted databases,'' in Proc. ACM SIGMOD

Int. Conf. Manage. Data, 2009, pp. 139 152.

[13] M. Naveed, M. Prabhakaran, and C. A. Gunter, ``Dynamic

searchable encryption via blind storage,'' in Proc. IEEE Symp.

Secur. Privacy, May 2014, pp. 639 654.

[14] H. Pang, J. Shen, and R. Krishnan, ``Privacy-preserving similarity-

based text retrieval,'' ACM Trans. Internet Technol., vol. 10, no. 1,

p. 4, 2010.

[15] J. Yu, P. Lu, Y. Zhu, G. Xue, and M. Li, ``Toward secure

multikeyword top-k retrieval over encrypted cloud data,'' IEEE

Trans. Dependable Secure Comput., vol. 10, no. 4, pp. 239 250,

Jul./Aug. 2013.

[16] A. Lewko and B. Waters, ``Decentralizing attribute-based

encryption. ,'' in Proc. EUROCRYPT. Berlin, Germany: Springer-

Verlag, 2011, pp. 568 588.

[17] NSF Research Awards Abstracts 1990-2003. [Online]. Available:

http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html, accessed

2004.

[18] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, ``Public

key encryption with keyword search,'' in Proc. EUROCRYPT, 2004,

pp. 506 522.

[19] D. Boneh and B. Waters, ``Conjunctive, subset, and range queries

on encrypted data,'' in Proc. TCC, 2007, pp. 535 554.

[20] B. Zhang and F. Zhang, ``An efficient public key encryption with

conjunctive-subset keywords search,'' J. Netw. Comput. Appl., vol.

34, no. 1, pp. 262 267, Jan. 2011.

[21] Q. Liu, C. C. Tan, J. Wu, and G. Wang, ``Efficient information

retrieval for ranked queries in cost-effective cloud environments,''

in Proc. IEEE INFOCOM, Mar. 2012, pp. 2581 2585.

[22] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, ``Protecting your

right: Attribute-based keyword search with ne-grained owner-

enforced search authorization in the cloud,'' in Proc. IEEE

INFOCOM, Apr./May 2014, pp. 226 234.

[23] Q. Zheng, S. Xu, and G. Ateniese, ``VABKS: Veri able attribute-

based keyword search over outsourced encrypted data,'' in Proc.

IEEE INFOCOM, Apr. 2014, pp. 522 530.

[24] D. X. Song, D. Wagner, and A. Perrig, ``Practical techniques for

searches on encrypted data,'' in Proc. IEEE Symp. Secur. Privacy,

May 2000, pp. 44 55.

[25] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ``Searchable

symmetric encryption: Improved de nitions and efficient

constructions,'' in Proc. 13th ACM Conf. Comput. Commun. Secur.,

2006, pp. 79 88.

[26] D. Cash et al., ``Dynamic searchable encryption in very-large

databases: Data structures and implementation,'' in Proc. NDSS,

Feb. 2014.

[27] C. Wang, N. Cao, K. Ren, and W. Lou, ``Enabling secure and

efficient ranked keyword search over outsourced cloud data,'' IEEE

Trans. Parallel Distrib. Syst., vol. 23, no. 8, pp. 1467 1479, Aug.

2012.

[28] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, ``Secure ranked

keyword search over encrypted cloud data,'' in Proc. IEEE 30th Int.

Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2010, pp. 253 262.

[29] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, ``Fuzzy

keyword search over encrypted data in cloud computing,'' in Proc.

IEEE INFOCOM, Mar. 2010, pp. 1 5.

