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Abstract: Cloud computing provide efficient storage to the user. The subcontracted records want to be encoded 

because the user wants to kept their data without leakage and trust. The encrypted data must be kept confidential. To 

overcome the difficulties we specify, by considering the big range of subcontracted files (statistics) within the cloud, 

we make use of the relevance rating and k-nearest neighbor strategies to expand an efficient multi-keyword search 
scheme which could go back the ranked seek consequences primarily based on the accuracy. inside this framework, we 

leverage an efficient index to in addition improve the search efficiency, and undertake the blind storage machine to 

conceal get right of entry to sample of the request user. safety evaluation demonstrates that our scheme can achieve 

confidentiality of documents and index, wormhole privateness, wormhole unmanagebility, and concealing get right of 

entry to sample of the request consumer. eventually, using widespread simulations, we show that our suggestion can 

attain a good deal improved efficiency in phrases of seek functionality and search time as compared with the prevailing 

proposals. 
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I. INTRODUCTION 
 

Mobile cloud computing [1] [4] gets rid of the hardware 

limitation of mobile devices by exploring the scalable and 

virtualized cloud storage and computing resources, and 

accordingly is able to provide much more powerful and 

scalable mobile services to users. In mobile cloud 

computing, mobile users typically outsource their data to 

external cloud servers, e.g., iCloud, to enjoy a stable, low-
cost and scalable way for data storage and access. 

However, as outsourced data typically contain sensitive 

privacy information, such as personal photos, emails, etc., 

which would lead to severe con dentiality and privacy 

violations [5], if without efficient protections. It is 

therefore necessary to encrypt the sensitive data before 

outsourcing them to the cloud. The data encryption, 

however, would result in salient dif culties when other 

users need to access interested data with search, due to the 

dif culties of search over encrypted data. This fundamental 

issue in mobile cloud computing accordingly motivates an 

extensive body of research in the recent years on the 
investigation of search-able encryption technique to 

achieve efficient searching over outsourced encrypted data 

[6] [9]. 
 

A collection of research works have recently been 

developed on the topic of multi-keyword search over 

encrypted data. Cash et al. [10] propose a symmetric 
searchable encryption scheme which achieves high ef 

ciency for large databases with modest scari cation on 

security guarantees. Cao et al. [11] propose a multi-

keyword search scheme sup-porting result ranking by 

adopting k-nearest neighbors (kNN) technique [12]. 

Naveed et.al. [13] propose a dynamic search-able 

encryption scheme through blind storage to conceal access 

pattern of the search user. 

 
 

In order to meet the practical search requirements, search 

over encrypted data should support the following three 

func-tions. First, the searchable encryption schemes 

should support multi-keyword search, and provide the 

same user experi-ence as searching in Google search with 
different keywords; single-keyword search is far from 

satisfactory by only return-ing very limited and inaccurate 

search results. Second, to quickly identify most relevant 

results, the search user would typically prefer cloud 

servers to sort the returned search results in a relevance-

based order [14] ranked by the relevance of the search 

request to the documents. In addition, showing the ranked 

search to users can also eliminate the unnecessary network 

traf c by only sending back the most relevant results from 

cloud to search users. Third, as for the search ef ciency, 

since the number of the documents contained in a database 
could be extraordinarily large, searchable encryption 

schemes should be efficient to quickly respond to the 

search requests with minimum delays. 
 

In contrast to the theoretical bene ts, most of the existing 

proposals, however, fail to offer suf cient insights towards 

the construction of full functioned searchable encryption 

as described above. As an effort towards the issue, in this 

paper, we propose an efficient multi-keyword ranked 

search (EMRS) scheme over encrypted mobile cloud data 

through blind storage. Our main contributions can be sum-

marized as follows: 
 

We introduce a relevance score in searchable encryption.  

to achieve multi-keyword ranked search over the 

encrypted mobile cloud data. In addition to that, we con-

struct an efficient index to improve the search efficiency.  
By modifying the blind storage system in the EMRS, we 

solve the trapdoor unlinkability problem and conceal 
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access pattern of the search user from the cloud server.  
 

We give thorough security analysis to demonstrate that the 

EMRS can reach a high security level including con-

dentiality of documents and index, trapdoor privacy, 

trapdoor unlinkability, and concealing access pattern of 

the search user. Moreover, we implement extensive 

experiments, which show that the EMRS can achieve 

enhanced efficiency in the terms of functionality and 
search efficiency compared with existing proposals. 
 

The remainder of this paper is organized as follows. In 

Section II, the system model, security requirements and 

design goal are formalized. In Section III, we recap 

relevance scoring, secure kNN technique, blind storage 

system and ciphertext policy attribute-based encryption. In 

Section IV, we propose the EMRS. Its security analysis 

and performance evaluation are presented in Section V 

and Section VI, respec-tively. In Section VII, we present 

related work. Finally, we conclude this paper in Section 

VIII. 
 

II. SYSTEM MODEL, SECURITY REQUIREMENTS 

AND DESIGN GOAL 
 

A. SYSTEM MODEL 
As shown in Fig. 1, the system model in the EMRS 

consists of three entities: data owner, search users and 

cloud server. The data owner keeps a large collection of 

documents D to be outsourced to a cloud server in an 

encrypted form C. In the system, the data owner sets a 

keyword dictionary W which contains d keywords. To 

enable search users to query over the encrypted 
documents, the data owner builds the encrypted index z. 

Both the encrypted documents C and encrypted index z are 

stored on the cloud server through blind storage system. 
 

 
 

FIGURE 1. System model 
 

When a search user wants to search over the encrypted 

documents, she rst receives the secret key from the data 

owner. Then, she chooses a conjunctive keyword set $ 

which contains l interested keywords and computes a 
trapdoor T including a keyword-related token stag and the 

encrypted query vector Q. Finally, the search user sends 

stag, Q, and an optional number k to the cloud server to 

request the most k relevant results. 

Upon receiving stag, Q, and k from the search user, the 

cloud server uses the stag to access the index z in the blind 

storage and computes the relevance scores with the 

encrypted query vector Q. Then, the cloud server sends 

back descrip-tors (Dsc) of the top-k documents that are 

most relevant to the searched keywords. The search user 
can use these descriptors to access the blind storage 

system to retrieve the encrypted documents. An access 

control technique, e.g., attribute-based encryption, can be 

implemented to manage the search user's decryption 

capability. 
 

B. SECURITY REQUIREMENTS 
In the EMRS, we consider the cloud server to be curious 

but honest which means it executes the task assigned by 

the data owner and the search user correctly. However, it 

is curious about the data in its storage and the received 

trapdoors to obtain additional information. Moreover, we 

consider the Knowing Background model in the EMRS, 

which allows the cloud server to know more background 

information of the documents such as statistical 

information of the keywords. Speci cally, the EMRS aims 

to provide the following four security requirements: 
 

Con dentiality of Documents and Index: Documents and 

index should be encrypted before being outsourced to a 

cloud server. The cloud server should be prevented from 
prying into the outsourced documents and cannot deduce 

any associations between the documents and keywords 

using the index.  
 

Trapdoor Privacy: Since the search user would like to keep 

her searches from being exposed to the cloud server, the 

cloud server should be prevented from know-ing the exact 

keywords contained in the trapdoor of the search user.  
 

Trapdoor Unlinkability: The trapdoors should not be 

linkable, which means the trapdoors should be totally 
different even if they contain the same keywords. In other 

words, the trapdoors should be randomized rather than 

determined. The cloud server cannot deduce any 

associations between two trapdoors. 
 

Concealing Access Pattern of the Search User: Access 

pattern is the sequence of the searched results. In the 

EMRS, the access pattern should be totally concealed from 

the cloud server. Speci cally, the cloud server cannot learn 

the total number of the documents stored on it nor the size 

of the searched document even when the search user 
retrieves this document from the cloud server.  
 

C. DESIGN GOAL  

To enable efficient and privacy-preserving multi-keyword 

ranked search over encrypted mobile cloud data via blind 

storage system, the EMRS has following design goals: 
 

Multi-Keyword Ranked Search: To meet the requirements 

for practical uses and provide better user experience, the 

EMRS should not only support multi-keyword search over 

encrypted mobile cloud data, but also achieve relevance-

based result ranking.  

Search Ef ciency: Since the number of the total documents 

may be very large in a practical situation, the EMRS 
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should achieve sublinear search with better search 

efficiency. 
 

Con dentiality and Privacy Preservation: To prevent the 
cloud server from learning any additional information 

about the documents and the index, and to keep search 

users' trapdoors secret, the EMRS should cover all the 

security requirements that we introduced above.  
 

III. PRELIMINARIES 
 

A. RELEVANCE SCORING 
In searchable symmetric encryption (SSE) schemes, due to 

a large number of documents, search results should be 

retrieved in an order of the relevancy with the searched 

keywords. Scoring is the natural way to weight the 
relevancy of the documents. Among many relevance 

scoring techniques, we adopt TF-IDF weighting [15] in the 

EMRS. In TF-IDF weight-ing, term frequency tft; f refers 

to the number of term t in a document f. Inverse document 

frequency is calculated as 
idft  D log N , where dft denotes the number of documents dft 

which contain term t and N refers to the total number of 

documents in the database. Then, the weighting of term t 

in a document f can be calculated as tft;f idft . 
 

B. SECURE kNN COMPUTATION 
We adopt the work of Wong et al. [12] in the EMRS. 

Wong et al. propose a secure k-nearest neighbor (kNN) 

scheme which can con dentially encrypt two vectors and 

compute Euclidean distance of them. First, the secret key 

(S; M1; M2) should be generated. The binary vector S is a 

splitting indi-cator to split plaintext vector into two 

random vectors, which can confuse the value of plaintext 

vector. And M1 and M2 are used to encrypt the split 
vectors. The correctness and security of secure kNN 

computation scheme can be referred to [12]. 
 

C. BLIND STORAGE SYSTEM 
A blind storage system [13] is built on the cloud server to 

sup-port adding, updating and deleting documents and 

concealing the access pattern of the search user from the 
cloud server. In the blind storage system, all documents 

are divided into xed-size blocks. These blocks are indexed 

by a sequence of random integers generated by a 

document-related seed. In the view of a cloud server, it 

can only see the blocks of encrypted documents uploaded 

and downloaded. Thus, the blind storage system leaks 

little information to the cloud server. Speci cally, the cloud 

server does not know which blocks are of the same 

document, even the total number of the documents and the 

size of each document. Moreover, all the documents and 

index can be stored in the blind storage system to achieve 
a searchable encryption scheme. 
 

D. CIPHERTEXT POLICY ATTRIBUTE-BASED 

ENCRYPTION 
In ciphertext policy attribute-based encryption (CP-ABE) 

[16], ciphertexts are created with an access struc-ture 

(usually an access tree) which de nes the access policy. A 
user can decrypt the data only if the attributes embedded 

in his attribute keys satisfy the access policy in the 

ciphertext. In CP-ABE, the encrypter holds the ultimate 

authority of the access policy. 
 

IV. PROPOSED SCHEME 
 

In this section, we propose the detailed EMRS. Since the 

encrypted documents and index z are both stored in the 

blind storage system, we would provide the general 

construc-tion of the blind storage system. Moreover, since 
the EMRS aims to eliminate the risk of sharing the key 

that is used to encrypt the documents with all search users 

and solve the trapdoor unlinkability problem in Naveed's 

scheme [13], we modify the construction of blind storage 

and lever-age ciphertext policy attribute-based encryption 

(CP-ABE) technique in the EMRS. However, speci c 

construction of CP-ABE is out of scope of this paper and 

we only give a simple indication here. The notations of 

this paper are shown in Table 1. The EMRS consists of the 

following phases: System Setup, Construction of Blind 

Storage, Encrypted Database Setup, Trapdoor Generation, 
Efficient and Secure Search, and Retrieve Documents 

from Blind Stor-age. 
 

TABLE 1 Notations 
 

 
 

A. SYSTEM SETUP 
The data owner takes a security parameter , and outputs 

two invertible matrixes M1; M2 2 R(dC2) (dC2) as well as a 

(dC2)-dimension binary vector S as the secret key, where 

d represents the size of the keyword dictionary. Then, the 

data owner generates a set of attribute keys sk for each 

search user according to her role in the system. The data 

owner chooses a key KT for a symmetric cryptography 

Enc(), e.g., AES. Finally, the data owner sends (M1; M2; 

S; sk; Enc(); KT ) to the search user through a secure 

channel. 
 

B. CONSTRUCTION OF BLIND STORAGE 
The data owner chooses a full-domain collusion resistant 

hash function H , a full-domain pseudorandom function 9, 

a pseudorandom generator 0 and a hash function 8Vf0; 1g 

! f0; 1g192. 9 and 0 are based on the AES block-cipher 

[13]. Then, the data owner chooses a number > 1 that de 

nes the expansion parameter and a number that denotes the 
minimum number of blocks in a communication. 
 

1) B.KEYGEN 

The data owner generates a key K9 for the function 9 and 

sends it to the search user using a secure channel. 
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2) B.BUILD 

This phase takes into a large collection of documents D. D 

is a list of documents (d1; d2; d3 dm) containing m docu-

ments. where each document has a unique id denoted as 

idi. The B.Build outputs an array of blocks B, which 

consists of nb blocks of mb bits each. For document di, it 
contains sizei blocks of mb bits each and each header of 

these blocks contains the H (idi). In addition, the header of 

the rst block of the document di indicates the size of di. At 

the beginning, we initialize all blocks in B with all 0. For 

each document di in D, we construct the blind storage as 

follows: 
 

Step 1: Compute the seed i D 9K9 (idi) as the input of the 

function 0. Generate a suf ciently long bit-number through 

the function 0 using the seed I and parse it as a sequence 
of integers in the range [nb]. Let [i;l] denote the rst l 

integers of this sequence. Generate a set Sf D [ i; max(d 

sizeie; )]. 

Step 2: Let Sf
0
 D [ i; ], then check if the following 

conditions hold: 
 

There exists sizei free blocks indexed by the integers in the 

set Sf .  
 

There exists one free block indexed by the integers in the  

set Sf
0.If either of the above two does not hold, abort. 

Step 3: Pick a subset Sf
0 Sf that contains sizei integers, and 

make sure that the blocks indexed by these integers in the 

subset Sf
0 are all free. We would rely on the fact that 

integers in the set Sf are in a random order and we pick the 

rst sizei integers indexing free blocks and make these 

integers form the subset Sf
0 . Mark these blocks as unfree. 

Then, write the document di to the blocks indexed by the 

integers in Sf
0 in an increasing order. 

Note that, one can once write the blocks of different docu-

ments to the blind storage system to conceal the 

associations of the blocks. Moreover, the speci c 

construction of each block and the encryption of the 

blocks would be discussed next. 
 

DISCUSSIONS 

The main idea of the blind storage system is that storing a 

document in a set of xed-size blocks indexed by the 

integers, that are generated by applying the seed i to the 

pseudorandom generator 0. To reduce the probability that 

the number of free blocks indexed by integers in Sf is less 

than sizei, we can choose a sequence of sizei integers as 

the set Sf . Here the choice of the parameter is an inherent 

tension between collision probability and the wasted 

space. And the probability the above two conditions in 
Step 2 do not hold may be negligible by the choice of the 

parameters [13]. And we would prove it in Section V. 
 

C. ENCRYPTED DATABASE SETUP 
The data owner builds the encrypted database as follows: 
Step 1: The data owner computes the d-dimension 

relevance vector p D (p1; p2; pd ) for each document using 

the TF-IDF weighting technique, where pj for j 2 (1; 2 d) 

represents the weighting of keyword !j in document di. 

Then, the data owner extends the p to a (dC2)-dimension 

vector p . The (dC1)-th entry of p is set to a random 

number " and the (dC2)-th entry is set to 1. We would let " 

follow a normal distribution N ( ; 2) [11]. For each 

document di, to com-pute the encrypted relevance vector, 

the data owner encrypts the associated extended relevance 

vector p using the secret key M1, M2 and S. First, the data 

owner chooses a random number r and splits the extended 
relevance vector p into two (dC2)-dimension vectors p0 

and p00 using the vector S. For the j-th item in p, set 
 

pj
0
 D pj

00
 D pj ; if SjD1 (1) 

pj
0
 D 2

1
pj C r; pj

00
D2

1
pj    r; otherwise 

 

where Sj represents the j-th item of S. Then compute the P 

D fM1
T p0; M2

T p00g as the encrypted relevance vector. 
 

Step 2: For each document di in D, set the document into 

blocks of mb bits each. For each block, there is a header H 

(idi) indicating that this block belongs to document di. And 

the sizei of the document is contained in the header of the 

rst block of di. Then, for each document di, the data owner 

chooses a 192-bit key Ki for the algorithm Enc(). More 

precisely, for each block B[j] of the document di, where j 

represents the index number of this block, compute the Ki 

8(j) as the key for the encryption of this block. Since each 

block has a unique index number, the blocks of the same 

document are encrypted with different keys. The 
document di contains sizei encrypted blocks and the rst 

block of the document di with index number j is as 
 

Enc(Ki8(j))(H (idi)jjsizeijjdata) (2) 
 

And the rest of the blocks of di is as 

Enc(Ki  8(j))(H (idi)jjdata) (3) 
 

Finally, the data owner encrypts all the documents and 

writes them to the blind storage system using the B.Build 
function. 
 

Step 3: To enable efficient search over the encrypted 

documents, the data owner builds the index z. First, the 

data owner de nes the access policy i for each document di. 

We denote the result of attribute-based encryption using 

access policy i as ABE i (). The data owner initializes z to 

an empty array indexed by all keywords. Then, the index z 

can be constructed as shown in Algorithm 1. 

 
Algorithm 1 Initialize z 
 

1: for each keyword ! 2 W do  

2: Set t an empty list  

3: for each document di containing the keyword ! do  

4: Get the associated vector P of di  

5: Choose a random number x  

6: Dsc   ABE i (idijjKijjx) 

7: Append the tuple (Dsc; P) to t  

8: end for  
9: z[!] D t  

10: end for  
11: return z  
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As we can see, the index z maps the keyword to the 

encrypted relevance vectors (P) and the descriptors (Dsc) 

of the documents that contain the keyword. And each list 

z[!] can be transformed to be stored in the blind storage 

system with ! as the document id. Speci cally, for each 

z[!], the data owner computes ! D 9K9 (!) as the seed for the 
function 0 to generate the set Sf . Here, for each block of 

z[!] indexed by the integer j, the data owner adds an 

encrypted header as Enc(KT 8(j))(H (!)jjsize!), where size! 

represents the number of blocks that belong to z[!]. 

Finally, the data owner writes the index z to the blind 

storage system using the B.Build function. 
 

DISCUSSIONS 

When using the B.Build function, it is crucial to determine 

the way we compute the seed for generating the set Sf . We 

use the document id idi to compute the seed for the 

documents stored in the blind storage system, and the 

keyword ! to compute the seed for each z[!]. Moreover, 

each header of the blocks of the documents contains the 

encrypted H (idi) and the rst block indicates the sizei. And 

the blocks of index z are different from those of the 

documents. Each header of the blocks of index z is 

denoted as Enc(KT 8(j))(H (!)jjsize!). This little change is for 

the security concerns and does not affect the 
implementation of the blind storage. In addition, since 

each block is encrypted using the key generated by the 

index number, the headers would be different even if the 

two blocks belong to the same document or the same list 

z[!]. 
 

D. TRAPDOOR GENERATION 
To search over the outsourced encrypted data, the search 

user needs to compute the trapdoor including a keyword-

related token stag and encrypted query vector Q as 

follows: 
 

Step 1: The search user takes a keyword conjunction $ D 

(!1; !2; !l ) with l keywords of interest in W . A d-

dimension binary query vector q is generated where the j- 

th bit of q represents whether !j 2 $ or not. Then, the 

search user chooses two random numbers r, t and scales 

the query vector q to a (dC2)-dimension vector q as 

q  D frq; r; tg (4) 
 

Then, the search user chooses a random number r0 and 

splits the vector q into two (dC2)-dimension vectors q0 and 

q00. For the j-th item in q , set 

qj
0 D qj

00 D qj ; if Sj D 0 (5) 

(
qj0 D 2

1 qj C r0; qj
00 D 2

1 qj    r
0; otherwise 

 

The search user computes the Q D fM1 
1 q0; M2 

1 q00g as 

the encrypted query vector. 
 

Step 2: The search user chooses the estimated least 
frequent keyword !0 in the conjunction $ and computes the 

seed !0 D 9K9 (!0). Then the search user generates a long 

bit-number through the function 0 using the seed !0 . The 

search user chooses the sequence [ !0 ; ] and randomly 

adds dummy integers to the sequence. The search user 

down-loads the blocks indexed by these 2 integers and 

decrypts the header using the key KT 8(j), where j is the 

index number of the block, to nd the rst block of the list 

z[!0], which consists of the descriptors and the encrypted 

relevance vectors of the documents containing !
0
. Then the 

search user obtains the size!0 from the rst block and 

computes the set S! D [ !0 ; size!0 ]. The search user 
randomly adds size!0 dummy integers to the set S! 

resulting in a set S!
0 of 2 size!0 integers. And the extended 

set S!
0 is denoted as stag. Note that, the stag consists of 

some dummy integers, which is for the privacy 

consideration. Finally, the search user sends Q, stag and a 

number k to the cloud server to request the most k relevant 

documents. 
 

E. EFFICIENT AND SECURE SEARCH 
Upon receiving Q, stag, and k, the cloud server parses the 

stag to get a set of integers in the range [nb]. Then, the 

cloud server accesses index z in the blind storage and 

retrieves the blocks indexed by the integers to obtain the 

tuples (ABE i (idijjKijjx); P) on these blocks. Note that, 

these blocks consist of the blocks of z[!0] and some 

dummy blocks. For each retrieved encrypted relevance 

vector P, compute the relevance score Scorei for the 

associated document di with the encrypted query vector Q 

as follows: 
 

Scorei D P  Q 

D fM1
T  p0; M2

T  p00g fM1 
1  q0; M2 

1  q00g  

D p0  q0 C p00  q00  

D p  q  

D (p; ; 1)  (rq; r; t)  

D r(pq C ") C t (6) 
 

Finally, after sorting the relevance scores, the cloud server 

sends back the descriptors ABE i (idijjKijjx) of the top-k 

documents that are most relevant to the searched 

keywords. Note that, as discussed before, attribute-based 

encryption as an access control technique can be 

implemented to manage search user's decryption 

capability. 
 

F. Retrieve documents from blind storage 
Upon receiving a set of descriptors ABE i (idijjKijjx), the 

search user can retrieve the documents as follows: 
 

Step 1: If the search user's attributes satisfy the access 
policy of the document, the search user can decrypt the 

descriptor using her secret attribute keys to get the 

document id idi and the associated symmetric key Ki. To 

retrieve the document di, compute i D 9K9 (idi) for the 

function 0. Generate a suf ciently long bit-number through 

the func-tion 0 using the seed i, parse it as a sequence of 

integers in the range [nb] and choose the rst integers as the 

set Sf
0. Retrieve the blocks indexed by these integers from 

the encrypted database D through blind storage system. 
 

Step 2: The search user tries to decrypt these blocks using 

the symmetric key Ki 8(j), until she nds the rst block of the 

document di. If she does not nd the rst block, the document 

is not accessed in the system. Otherwise, the search user 

recovers the size of the document sizei from the header of 

the rst block. 
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Step 3: Then, the search user computes l D d sizeie. If l , 

compute Sf D [ i; ]. Otherwise, compute Sf D [ i; l] and 

retrieve the rest of the blocks indexed by the integers in Sf 

via the blind storage system. Decrypt these blocks and 

combine the blocks with the header H (idi) in an increasing 

order to recover document di. 
 

DISCUSSIONS 
Here we explain how the search user retrieves one 

document from the blind storage system. This can form 

the foundation of the B.Aceess function of the blind 

storage. Moreover, the search user can require more than 

one document once by combining the sequence Sf
0 and Sf 

of different documents in a random order. And this 

combination can further conceal access pattern of the 

search user since the cloud server even does not know the 

number of documents that the search user requires. 
 

V. SECURITY ANALYSIS 
 

Under the assumption presented in Section II, we analyze 

the security properties of the EMRS. We give analysis of 

the EMRS in terms of con dentiality of documents and 
index, trapdoor privacy, trapdoor unlinkability and 

concealing access pattern of the search user. 
 

A. CONFIDENTIALITY OF DOCUMENTS AND 

INDEX 
The documents are encrypted by the traditional symmetric 

cryptography technique before being outsourced to the 
cloud server. Without a correct key, the search user and 

cloud server cannot decrypt the documents. As for index 

con dentiality, the relevance vector for each document is 

encrypted using the secret key M1, M2, and S. And the 

descriptors of the documents are encrypted using CP-ABE 

technique. Thus, the cloud server can only use the index z 

to retrieve the encrypted relevance vectors without 

knowing any additional information, such as the 

associations between the documents and the keywords. 

And only the search user with correct attribute keys can 

decrypt the descriptor ABE i (idijjKijjx) to get the 
document id and the associated symmetric key. Thus, the 

con dentiality of documents and index can be well 

protected. 
 

B. TRAPDOOR PRIVACY 
When a search user generates her trapdoor including the 

keyword-related token stag and encrypted query vector Q, 

she randomly chooses two numbers r and t. Then, for the 

query vector q, the search user extends it as (rq; r; t) and 

encrypts the query vector using the secret key M1; M2 and 

S. Thus, the query vectors can be totally different even if 

they contain same keywords. And we use the secure 

function 9 and 0 to help the search user compute keyword-

related token stag using the secret key K9 . Without the 

secret key M1; M2; S and K9 , the cloud server cannot pry 

into the trapdoor. And the search user can add dummy 

integers to the set Sf to conceal what she is truly searching 
for. Thus, the keyword information in the trapdoor is 

totally concealed from the cloud server in the EMRS and 

trapdoor privacy is well protected. 

C. TRAPDOOR UNLINKABILITY 
Trapdoor unlinkability is de ned as that the cloud server 

cannot deduce associations between any two trapdoors. 

Even though the cloud server cannot decrypt the trapdoors, 

any association between two trapdoors may lead to the 

leakage of the search user's privacy. We consider whether 
the two trapdoors including stag and the encrypted query 

vector Q can be linked to each other or to the keywords 

Moreover, we would prove the EMRS can achieve 

trapdoor unlinkability under the Knowing Backgroud 

model. 
 

To compute the encrypted query vector Q that is de ned as 

fM1 
1 q0; M2 

1 q00g in the EMRS. First, the search user 

needs to extend the query vector q to q . As we can see, 

the (dC1)-th and (dC2)-th entry of the vector q are set to 
random values r and t. So there are 2 r 2 t possible values, 

where the number r and t are r -bit or t -bit long, 

respectively. Further, the search user needs to split the 

vector q according to the splitting vector S as we discussed 

above. If Sj D 0, the qj is split into two random values 

which add up to qj . Suppose that the number of 0 in S is 

and each dimension of the vector q0 is q-bit long. We can 

see that r , t , and q are independent of each other. Then we 

can compute the probability that two encrypted query 

vectors are the same as 
 

 
 

Therefore, the larger these parameters are, the lower the 

prob-ability is. Hence, if we choose 1024-bit r and t, the 

probability that two encrypted query vectors are the same 

is P < 22048
1 , which is negligible as a result. 

 

As for the keyword-related token stag, the search user rst 

obtains the size! from the cloud server using the sequence 

of 2 integers, half of which are dummy integers. Then, the 

search user computes the set S! D [ !; size!] and adds size! 

dummy integers to the set S! to form the stag. Thus, each 
stag contains 2 size! random integers, half of which are 

random integers. Suppose the integers are nb bits long. 

Then the probability that the two stags are the same is 
 

 
 

Hence, if we choose 12-bit long nb, 3-bit long extension 

parameter and size! is supposed to be 8-bit long, the 

probability P0 < 2576
1 , which is negligible as a result. 

 

In Cash's scheme [10] and Naveed's scheme [13], for the 

same keyword, the search user can only compute the same 

stag or the same set Sf . Moreover, when a search user 

accesses the cloud server using a keyword that has been 

searched before, the cloud server can learn that two search 

requests contain the same keyword. Under Knowing 
Backgroud model, the cloud server may learn the search 

fre-quency of the keywords and deduce some information 

using the statistic knowledge in [10] and [13]. 
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D. CONCEALING ACCESS PATTERN OF THE 

SEARCH USER 
The access pattern means the sequence of the searched 

results [11]. In Cash's scheme [10] and Cao's scheme [11], 

the search user directly obtains the associated documents 

from the cloud server, which may reveal the association 
between the search request and the documents to the cloud 

server. In the EMRS by modifying the blind storage 

system, access pattern is well concealed from the cloud 

server. Since the headers of the blocks are encrypted with 

the block number j and each descriptor has a random 

padding, they would be different even if they belong to the 

same document. Thus, in view of the cloud server, it can 

only see blocks downloaded and uploaded. And, the cloud 

server even does not know the number of the documents 

stored in its storage and the length of each document, since 

all the documents are divided into blocks in a random 
order. In addition, when a search user requests a 

document, she can choose more blocks than the document 

contains. Moreover, she can require blocks of different 

documents at one time in a random order to totally conceal 

what she is requesting. 
 

In the implementation of the blind storage system, there 

would be a trade-off between security guarantee and 

perfor-mance by the choice of parameters. We de ne the 

Perr as the probability that the data owner aborts the 

document when there are not enough free blocks indexed 

by the integers in the set Sf as discussed in Section IV. 
When this abort happens, some illegitimate information 

may be revealed to the cloud server [13]. We consider the 

following parameters , and to measure the Perr . We denote 

D nb=m, where nb is the number of blocks in the array B 

and m is the total number of the documents stored on the 

cloud server. is the ratio that scales the number of blocks a 

document contains to the number of blocks in the set Sf. is 

the minimum number of blocks in a transaction. Then, 

according to [13], we can compute the Perr as 
 

 
 

As we can see, the higher these parameters we choose, the 

lower the probability Perr is and the higher the security 

guarantee would be. However, the parameters also in 

uence the performance of the blind storage system, such as 

the communication and computation cost. By the choice of 
these parameters, the probability Perr would be negligible 

[13]. The comparison of security level is shown in TABLE 

2. We can see that the EMRS can achieve best security 

guaran-tees compared with the exiting schemes [10], [11], 

[13]. 
 

TABLE 2.Comparison of security level 
 

 

VI. PERFORMANCE EVALUATION 
 

A. FUNCTIONALITY 
Considering a large number of documents and search users 

in a cloud environment, searchable encryption schemes 

should allow privacy-preserving multi-keyword search and 

return documents in a order of higher relevance to the 

search request. As shown in TABLE 3, we compare 

functionalities among the EMRS, Cash's scheme [10], 

Cao's scheme [11] and Naveed's scheme [13]. 
 

TABLE 3 Comparison of functionalities 
 

 
 

Cash's scheme supports multi-keyword search, but cannot 

return results in a speci c order of the relevance score. 
Cao's scheme achieves multi-keyword search and returns 

documents in a relevance-based order. Naveed's scheme 

implements the blind storage system to protect the access 

pattern but it only supports single-keyword search and 

returns undifferentiated results. The EMRS can achieve 

multi-keyword search, and relevance sorting while 

preserving a high security guarantees as discussed in 

Section V. 
 

B. COMPUTATION OVERHEAD 

We evaluate the performance of the EMRS through 

simula-tions and compare the time cost with Cao's [11]. 

We apply a real dataset National Science Foundation 

Research Awards Abstracts 1990-2003 [17], by randomly 

selecting some documents. Then, we conduct real-world 

experiments on a 2.8Hz-processor, computing machine to 
evaluate the perfor-mance of index construction and 

search phases. Moreover, we implement the trapdoor 

generation on a 1.2GHz smart phone. We would show the 

simulation experiments of the EMRS, and demonstrate 

that the computation overhead of index construction and 

trapdoor generation are almost the same compared with 

that of Cao's [11]. Then we would compare the execution 

time of search phase with Cao's [11] and show that the 

EMRS achieves better search ef ciency. 
 

1) INDEX CONSTRUCTION 

Index construction in the EMRS consists of two phases: 

encrypted relevance vector computation and the efficient 

index z construction via blind storage. 

As for the computation of encrypted relevance vector, the 

data owner rst needs to compute the relevance score for 

each keyword in each document using the TF IDF 

technique. As shown in Fig. 2, both the size of the 

dictionary and the number of documents would in uence 
the time for calculating all the relevance scores. Then, to 

compute the encrypted relevance vector P, the data owner 

needs two multiplications of a (d C 2) (d C 2) matrix and a 

(dC2)-dimension vector with complexity O(d
2
). The time 

cost for computing all the encrypted relevance vectors is 

linear to the size of the database since time for building 
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subindex of one document is xed. Thus, the computation 

complexity is O(md2), where m represents the number of 

documents in the database and d represents the size of the 

keyword dictionary W . The computation complexity is as 

the same as that in Cao's [11]. The computational cost for 

computing the encrypted relevance vectors is shown in 
Fig. 3. As we can see, both the size of the dictionary and 

the number of documents would affect the execution time. 

 

 
 

 
 

FIGURE 2. Time for calculating relevance score. (a) 

For the different size of dictionary with the same 
number of documents, m D 10000. (b) For the different 

number of documents with the same size of dictionary, 

jWj D 10000. 
 

Finally, we adopt the index z via the blind storage in the 

EMRS to improve search ef ciency and conceal the access 

pattern of the search user. For each keyword ! 2 W , we 

need to build the list z[!] of tuples (ABE i (idijjKijjx); P) of 
documents that contain the keyword and upload it using 

the B.Build function. So the computation complexity to 

build the index z is O(%d), where % represents the 

average number of tuples contained in the list z[!] and is 

no more than the number of document m. Since the access 

pattern is not con-sidered in most schemes, we are not 

going to give the speci c comparison of the 

implementation of the blind storage [13] in the EMRS. 
 

2) TRAPDOOR GENERATION 

In the EMRS, trapdoor generation consists of stag and 

encrypted query vector Q. To compute stag, the search 

user only needs two efficient operations (9 and 0) to 

generate a sequence of random integers. Compared with 

time cost to compute the encrypted query vector which is 

linearly increasing with the size of the keyword dictionary, 

time cost for computing stag is negligible. 

 

 
 

 
FIGURE 3. Time for computing the encrypted 

relevance vectors. (a) For the different size of 

dictionary with the same number of documents, m D 

6000. (b) For the different number of documents with 

the same size of dictionary, jWj D 4000. 
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FIGURE 4. Time for generating trapdoor on a real 

smart phone. (a) For the different size of dictionary 

with the same number of query keywords, j$j D 20. (b) 

For the different number of query keywords with the 

same size of dictionary, jWj D 6000. 
 

As for computing the encrypted query vector Q, the search 

user needs to compute two multiplications of a (d C 2) (d 

C 2) matrix and a (dC2)-dimension vector with complexity 

O(d 2). Thus, the computation complexity of trapdoor 

generation for the search user is O(d2), which is as the 
same as that in Cao's scheme [11]. As shown in Fig. 4, we 

conduct a simulation experiment on a 1.2Ghz smart phone 

and give the experiment results for computing trapdoor in 

the EMRS. 
 

3) SEARCH EFFICIENCY 

Search operation in Cao's scheme [11] requires comput-

ing the relevance scores for all documents in the database. 
For each document, the cloud server needs to compute the 

inner product of two (dC2)-dimension vectors twice. Thus, 

the computation complexity for the whole data collection 

is O(md). As we can see, the search time in Cao's scheme 

linearly increases with the scale of the dataset, which is 

impractical for large-scale dataset. 
 

In the EMRS, by adopting the inverted index z which is 

built in the blind storage system, we achieve a sublinear 

computation overhead compared with Cao's scheme. 

Upon receiving stag, the cloud server can use stag to 

access blind storage and retrieve the encrypted relevance 
vector on the blocks indexed by the stag. These blocks 

consist of blocks of documents containing the stag-related 

keyword and some dummy blocks. Thus, the EMRS can 

signi cantly decrease the number of documents which are 

relevant to the searched keywords. Then, the cloud server 

only needs to compute the inner product of two (dC2)-

dimension vectors for the associated documents rather 

than computing relevance scores for all documents as that 

in Cao's scheme [11]. The computation complexity for 

search operation in the EMRS is O( %sd), where %s 

represents the the number of documents which contain the 
keyword applied by the keyword-related token stag and 

the is the extension parameter that scales the number of 

blocks in a document to the number of blocks in the set Sf 

The value of %s can be small if the search user typically 

chooses the estimated least frequent keyword, such that 

the computation cost for search on the cloud server is signi 

cantly reduced. 
 

As shown in Fig. 5, the computation cost of search phase 
is mainly affected by the number of documents in the 

dataset and the size of the keyword dictionary. In our 

experiments, we implement the index on the memory to 

avoid the time-cost I/O operations. Note that, although the 

time costs of search operation are linearly increasing in 

both schemes, the increase rate of the EMRS is less than 

half of that in Cao's scheme. 
 

 
 

FIGURE 5. Time for search on the cloud server. (a) 

For different number of documents with the same size 

of keyword dictionary and number of searched 
keywords, jWj D 8000, j$j D 20. 

(b) For different size of keyword dictionary with the 

same number of documents and searched keywords, m 

D 8000, j$j D 20. 
 

C. COMMUNICATION OVERHEAD 
When the system is once setup, including generating 
encrypted documents and index, the communication 

overhead is mainly in uenced by the search phase. In this 

section, we would compare the communication overhead 

among the EMRS, Cash's scheme [10], Cao's scheme [11] 

and Naveed's scheme [13] when searching over the cloud 

server. Since most existing schemes of SSE only consider 

obtaining a sequence of results rather than the related 
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documents, the comparison here would not involve the 

communication of retrieving the documents. 
 

In Cao's scheme [11], the search user needs to compute the 

trapdoor and send it to the cloud server. Then it can obtain 

the searched results. The communication overhead in 
Cao's is 2(d C 2) q, where d represents the size of the 

keyword dic-tionary and each dimension of the encrypted 

query vector is q-bit long. According to Cash's scheme 

[10], when a search user wants to query over the cloud 

server using a conjunctive keyword set $ , she needs to 

compute stag for the estimated least-frequent keyword and 

xtokens for the other keywords in the set $ . And, each 

xtoken contains j$ j elements in G, where G is a group of 

prime order p. Moreover, the search user needs to 

continuously compute the xtoken until the cloud server 

sends stop, which indicates that the total number of the 

xtokens is linear to %, the number of documents 
containing the keyword related to the stag. This results in 

much unnecessary communication overhead of %j$ jjGj, 

where jGj represents the size of an element in G. In 

Naveed's scheme [13], since the index is constructed in the 

blind storage system, the search user may need to access 

the blind storage system to obtain the size! and then obtain 

the results. This requires one or two round communication 

of size! nb bits, where is the extension parameter, size! is 

the number of blocks of documents containing !, and each 

index number is nb-bit long. In the EMRS, we modify the 

way the search user computes the sequence Sf that indexes 
the blocks by adding some dummy integers to Sf to 

conceal what the search user is searching for. The 

communication comparison is shown in TABLE 4. As we 

can see, even though the EMRS requires a little more 

communication overhead, the EMRS can achieve more 

functionalities compared with [10], [13] as shown in 

TABLE 3 and better search ef ciency compared with [11] 

as shown in Fig. 5. 
 

TABLE 4 Comparison of communication overhead 
 

 
 

DISCUSSIONS 

Note that the communication overhead in our paper is 

higher than that in the Cao's scheme. But the higher 
communica-tion overhead will not severely affect the 

user's experience. This is because that the communication 

overhead is mainly incurred by the exchange of short 

signaling messages and can be transmitted in a very short 

time. Moreover, with the adoption of advanced wireless 

technology, such as 4G/5G and IEEE 802.11ac, the 

communication delays tend to further reduce and 

negligible. As a theoretical framework, in this paper, we 

target to a prototype system and expose our proposal to the 

public. As such, based on the speci c deploy-ment 

scenarios, e.g., whether communication bandwidth is 

expensive and precious or not, to modify our proposal for 

real-world implementation. 
 

D. SIZE OF RETURNED RESULTS 
The size of the returned results in the EMRS is mainly 

affected by the choice of the security parameters, and the 

larger these two numbers are, the higher security guar-

antee the scheme provides, as we discussed in Section V. 

The size of returned results for each document can be a 

size! blocks, which contain the blocks of searched 

document and dummy blocks. Moreover, the search user 
can require many documents at one time and thus can 

avoid requesting dummy blocks. The EMRS provides 

balance parameters for search users to satisfy their 

different requirements on communication and computation 

cost, as well as privacy. 

 

VII. RELATED WORK 
 

Searchable encryption is a promising technique that 

provides the search service over the encrypted cloud data. 

It can mainly be classi ed into two types: Searchable 

Public-key Encryption.  (SPE) and Searchable Symmetric 
Encryption (SSE). 
 

Boneh et al. [18] rst propose the concept of SPE, which 

supports single-keyword search over the encrypted cloud 

data. The work is later extended in [19] to support the con-

junctive, subset, and range search queries on encrypted 

data. Zhang et al. [20] propose an efficient public key 

searchable encryption scheme with conjunctive-subset 

search. However, the above proposals require that the 
search results match all the keywords at the same time, 

and cannot return results in a specific order. Further, Liu et 

al. [21] propose a ranked search scheme which adopts a 

mask matrix to achieve cost-effectiveness. Yu et al. [15] 

propose a multi-keyword retrieval scheme that can return 

the top-k relevant documents by lever-aging the fully 

homomorphic encryption. [22], [23] adopt the attribute-

based encryption technique to achieve search authority in 

SPE. 
 

Although SPE can achieve above rich search function-

alities, SPE are not efficient since SPE involves a good 

many asymmetric cryptography operations. This motivates 

the research on SSE mechanisms. 
 

The rst SSE scheme is introduced by Song et al. [24], 

which builds the searchable encrypted index in a 

symmetric way but only supports single keyword. 

Curtmola et al. further improve the security de nitions of 
SSE in [25]. Their work forms the basis of many 

subsequent works, such as [10], [13], and [26], by 

introducing the fundamental approach of using a keyword-

related index, which enable the quickly search of 

documents that contain a given keyword. To meet the 

requirements of practical uses, conjunctive multi-keyword 

search is necessary which has been studied in [11] and 

[15]. Moreover, to give the search user a better search 

experience, some proposals [27], [28] propose to enabled 

ranked results instead of returning undifferentiated results, 

by introducing the relevance score to the searchable 
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encryption. To further improve the user experience, fuzzy 

keyword search over the encrypted data has also been 

developed in [7] and [29]. 
 

Cao et al. [11] propose a privacy-preserving multi-

keyword search scheme that supports ranked results by 

adopting secure k-nearest neighbors (kNN) technique in 

searchable encryption. The proposal can achieve rich 

functionalities such as multi-keyword and ranked results, 

but requires the computation of relevance scores for all 

documents contained in the database. This operation 

incurs huge computation overload to the cloud server and 

is therefore not suitable for large-scale datasets. Cash et al. 

[10] adopt the inverted index TSet, which maps the 

keyword to the documents containing it, to achieve 

efficient multi-keyword search for large-scale datasets. 
The works is later extended in [26] with the 

implementation on real-world datasets. However, the 

ranked results is not sup-ported in [26]. Naveed et.al. [13] 

construct a blind storage sys-tem to achieve searchable 

encryption and conceal the access pattern of the search 

user. However, only single-keyword search is supported in 

[13]. 

 

VIII. CONCLUSION 
 

In this paper, we have proposed a multi-keyword ranked 
search scheme to enable accurate, efficient and secure 

search over encrypted mobile cloud data. Security analysis 

have demonstrated that proposed scheme can effectively 

achieve con dentiality of documents and index, trapdoor 

privacy, trapdoor unlinkability, and concealing access 

pattern of the search user. Extensive performance 

evaluations have shown that the proposed scheme can 

achieve better ef - ciency in terms of the functionality and 

computation overhead compared with existing ones. For 

the future work, we will investigate on the authentication 

and access control issues in searchable encryption 

technique. 
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